
18 Digital Fundamentals

Walking through these partial products takes extra logic and time, which is why multiplication and,
by extension, division are considered advanced operations that are not nearly as common as addition
and subtraction. Methods of implementing these functions require trade-offs between logic com-
plexity and the time required to calculate a final result.

1.8 FLIP-FLOPS AND LATCHES

Logic alone does not a system make. Boolean equations provide the means to transform a set of in-
puts into deterministic results. However, these equations have no ability to store the results of previ-
ous calculations upon which new calculations can be made. The preceding adder logic continually
recalculates the sum of two inputs. If either input is removed from the circuit, the sum disappears as
well. A series of numbers that arrive one at a time cannot be summed, because the adder has no
means of storing a running total. Digital systems operate by maintaining state to advance through se-
quential steps in an algorithm. State is the system’s ability to keep a record of its progress in a partic-
ular sequence of operations. A system’s state can be as simple as a counter or an accumulated sum.

State-full logic elements called flip-flops are able to indefinitely hold a specific state (0 or 1) until
a new state is explicitly loaded into them. Flip-flops load a new state when triggered by the transition
of an input clock. A clock is a repetitive binary signal with a defined period that is composed of 0
and 1 phases as shown in Fig. 1.10. In addition to a defined period, a clock also has a certain duty cy-
cle, the ratio of the duration of its 0 and 1 phases to the overall period. An ideal clock has a 50/50
duty cycle, indicating that its period is divided evenly between the two states. Clocks regulate the
operation of a digital system by allowing time for new results to be calculated by logic gates and
then capturing the results in flip-flops.

There are several types of flip-flops, but the most common type in use today is the D flip-flop.
Other types of flip-flops include RS and JK, but this discussion is restricted to D flip-flops because of
their standardized usage. A D flip-flop is often called a flop for short, and this terminology is used
throughout the book. A basic rising-edge triggered flop has two inputs and one output as shown in
Fig. 1.11a. By convention, the input to a flop is labeled D, the output is labeled Q, and the clock is
represented graphically by a triangle. When the clock transitions from 0 to 1, the state at the D input
is propagated to the Q output and stored until the next rising edge. State-full logic is often described
through the use of a timing diagram, a drawing of logic state versus time. Figure 1.11b shows a basic
flop timing diagram in which the clock’s rising edge triggers a change in the flop’s state. Prior to the
rising edge, the flop has its initial state, Q0, and an arbitrary 0 or 1 input is applied as D0. The rising
edge loads D0 into the flop, which is reflected at the output. Once triggered, the flop’s input can
change without affecting the output until the next rising edge. Therefore, the input is labeled as
“don’t care,” or “xxx” following the clock’s rising edge.

Logic 1

Logic 0

Time

0 Phase 1 Phase 0 Phase 1 Phase

Period

Finite transition time of
real clock signal

FIGURE 1.10 Digital clock signal.

-Balch.book Page 18 Thursday, May 15, 2003 3:46 PM

Digital Logic 19

Rising-edge flops are the norm, although some flops are falling-edge triggered. A falling-edge
triggered flop is indicated by placing an inversion bubble at the clock input as shown in Fig. 1.12.
Operation is the same, with the exception that the polarity of the clock is inverted. The remainder of
this discussion assumes rising-edge triggered flops unless explicitly stated otherwise.

There are several common feature enhancements to the basic flop, including clock-enable, set,
and clear inputs and a complementary output. Clock enable is used as a triggering qualifier each
time a rising clock edge is detected. The D input is loaded only if clock enable is set to its active
state. Inputs in general are defined by device manufacturers to be either active-low or active-high. An
active-low signal is effective when set to 0, and an active-high signal is effective when set to 1. Sig-
nals are assumed to be active-high unless otherwise indicated. Active-low inputs are commonly indi-
cated by the same inversion bubble used to indicate a falling-edge clock. When a signal is driven to
its active state, it is said to be asserted. A signal is de-asserted when driven to its inactive state. Set
and clear inputs explicitly force a flop to a 1 or 0 state, respectively. Such inputs are often used to ini-
tialize a digital system to a known state when it is first turned on. Otherwise, the flop powers up in a
random state, which can cause problems for certain logic. Set and clear inputs can be either synchro-
nous or asynchronous. Synchronous inputs take effect only on the rising clock edge, while asynchro-
nous inputs take effect immediately upon being asserted. A complementary output is simply an
inverted copy of the main output.

A truth table for a flop enhanced with the features just discussed is shown in Table 1.10. The truth
table assumes a synchronous, active-high clock enable (EN) and synchronous, active-low set and
clear inputs. The rising edge of the clock is indicated by the ↑ symbol. When the clock is at either
static value, the outputs of the flop remain in their existing states. When the clock rises, the D, EN,

, and inputs are sampled and acted on accordingly. As a general rule, conflicting infor-
mation such as asserting and at the same time should be avoided, because unknown re-
sults may arise. The exact behavior in this case depends on the specific flop implementation and may
vary by manufacturer.

A basic application of flops is a binary ripple counter. Multiple flops can be cascaded as shown in
Fig. 1.13 such that each complementary output is fed back to that flop’s input and also used to clock
the next flop. The current count value is represented by the noninverted flop outputs with the first
flop representing the LSB. A three-bit counter is shown with an active-low reset input so that the
counter can be cleared to begin at zero. The counter circuit diagram uses the standard convention of

D Q

(a)

Clock

D

Q

xxxInitial Value = D0

Initial Value = Q0 New Value = D0

(b)

FIGURE 1.11 Rising-edge triggered flop.

(a) (b)

D Q Clock

D

Q

xxxInitial Value = D0

Initial Value = Q0 New Value = D0

FIGURE 1.12 Falling-edge triggered flop.

CLR SET
CLR SET

-Balch.book Page 19 Thursday, May 15, 2003 3:46 PM

